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Abstract: We report on the development and validation of a compact laser instrument using 
mid-IR direct absorption spectroscopy (DAS) for high-precision measurements of ethanol in 
breath-like air mixtures. Leveraging the intermittent continuous wave (iCW) driving for 
conventional narrow-band distributed feedback (DFB) quantum cascade laser (QCL) emitting 
around 9.3 µm and using a 25 m path length multiple-pass absorption cell at reduced pressure, 
a precision of 9 ppb (amount fraction, nmol mol−1) at 60 s integration time is achieved even in 
the presence of 5% of H2O and CO2. Thus, the instrument is well suitable for metrological 
studies to investigate observed, but yet unquantified, discrepancies between different breath 
alcohol reference-generation methods. The approach can be generalized and applied for other 
organic molecules in a wide range of applications. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

In many countries, alcohol breath analyzers are approved as evidential measurement devices 
to prosecute driving under the influence of alcohol [1]. Handheld analyzers used by the 
authorities must undergo type approval, conformity assessment, and annual verification. 
Currently, the metrological requirements for analyzer performance are based on the 
International Organization of Legal Metrology (OIML) specifications [2]. For calibration, 
there are two kinds of measurement standards in use [3]: i) dry ethanol-air mixtures in 
pressurized gas cylinders that are certified and made directly traceable to primary 
gravimetrically prepared standards [4], and ii) dynamic systems for ethanol-air-water vapor 
mixture generation based on Henry’s Law, where air is passed through a water-ethanol 
solution at a given temperature [5]. 

Dry standards are controversial because they lack water vapor, which is a critical 
parameter in breath-alcohol measurements. Therefore, dynamic calibration standards, 
produced by the saturation method in so-called wet bath simulators, are usually preferred. 
Calibration gases produced in this way depend only on the temperature and the alcohol 
concentration of the liquid phase. The gas phase concentration is generally calculated using 
the Dubowski equation [5]. Critical points in the use of the wet bath simulator are the liquid 
temperature stability, the lack of traceability evidence on the outlet gas, and the uncertainty of 
the Henry coefficients used for the formulation of the Dubowski equation [6–9]. In fact, 
traceability and accuracy are ensured only by assuming a conventional value, fixed in OIML 
R 126 Recommendation for these coefficients [2]. Whilst this approach is generally accepted, 
it is metrologically highly unsatisfactory. 

Recently, alternative methods were proposed based on diffusion and injection for 
generating a test gas for breath alcohol measurements to possibly replace the saturation 
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method using the wet bath simulator [7,10]. Their advantages over the saturation method are 
the faster response time and better operation stability. Following the injection principle, a 
traceable generator for wet breath-alcohol was built at METAS (Switzerland) [11]. 
Preliminary results indicate a disagreement between the saturation and dynamic-gravimetric 
methods of up to 2% based on measurements using a flame-ionization-detector (FID) as 
comparator. From the point of view of road safety or medical care, a 2% disagreement in 
reference systems for the measurement of breath alcohol may appear as a minor issue. 
However, if we consider legal metrology requirements for evidential breath analyzers, i.e. the 
maximum permissible error of 5%, as defined by the OIML Recommendation, a 2% relative 
disagreement is highly significant during type approval and initial verification. It is very 
laborious and costly for instrument manufacturers to adapt for non-concordant reference 
systems in different countries. Furthermore, for individuals, a 2% difference in measurement 
results may have crucial impacts in the context of fines or driving license withdrawals with 
severe consequences especially for professional drivers. Therefore, it is vital to further 
constrain the observed disagreement. Currently, none of the commercially available 
measurement systems has the required precision and selectivity for such metrological 
investigations. Thus, breath alcohol analysis, the worldwide most frequent forensic test, lacks 
convincing means in terms of SI traceability; a situation that one should consider urgent. 

To address this issue, we propose laser absorption spectroscopy (LAS) as a long 
established, sensitive, selective, and transparent approach [12], which has also been 
successfully applied as absolute method in metrology [13]. With the development of mid-IR 
semiconductor laser sources, such as quantum cascade lasers (QCL) or interband cascade 
lasers (ICL), it became possible to take full advantage of the strongest, fundamental 
absorption features of most molecules in compact and field-deployable setups [14]. Further 
benefits of LAS are the inherent high temporal resolution (< 1 s), and the possibility of in situ 
and real time measurements without the need for sample treatment or preparation procedures. 
Compared to non-dispersive infrared (NDIR) technology, which is used in commercial 
ethanol analyzers, there are several advantages of using laser sources. The coherent radiation 
of a laser source allows for extended optical path lengths up to 104 meters, realized by 
employing either multipass cell or optical cavity, which increases the absorption signal and 
thus the sensitivity, according to Lambert-Beer’s law. Additionally, the signal-to-noise ratio 
(SNR) is improved compared to conventional IR light sources, due to the much brighter IR 
radiation of the laser sources. Furthermore, the narrow bandwidth laser emission can be 
rapidly scanned through individual ro-vibrational lines at rates of kHz, leading to highly 
selective and sensitive measurements of the absorbing species, especially at reduced sample 
pressure [15]. 

While mid-IR LAS has been very successful in many applications targeting small 
inorganic compounds, its application becomes more challenging for larger molecules, which 
exhibit broader and congested absorption features requiring wide spectral coverage. 
Although, this paradigm generally applies, we demonstrate that the narrow spectral coverage 
of a distributed feedback (DFB)-QCL may deliver enough spectral information to measure 
gas mixtures containing organic molecules. To be applicable, it is however necessary that 
there is sufficient fine-structure in the absorption feature of the target compound, and that the 
maximum tuning range of the DFB-QCL is fully exploited, e.g. by intermittent continuous 
wave (iCW) operation to extend its spectral coverage, as recently proposed by Fischer et al 
[16]. A similar approach was used earlier by Kosterev et al [17], but only for pure ethanol and 
reaching a detection limit of 125 ppb, which is more than one order of magnitude higher than 
required for our target application. 

The objective of this work was to develop and validate a metrological breath-alcohol laser 
spectrometer based on the direct absorption technique for metrological applications. We show 
that ethanol represents an excellent target compound to be examined by iCW-driven QCL 
absorption spectroscopy (iCW-QCLAS). The high analytical precision of the instrument 
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allows investigating small differences between the saturation method according to Dubowski 
and a SI-traceable method. Furthermore, a compact instrumentation could be used as transfer-
standard in international inter-comparisons and represents an important alternative to existing 
approaches, involving “black-box” commercial analyzers or gas-mixtures in bottles. 
Moreover, the use of our approach for ethanol analysis can be generalized and applied for 
other organic molecules in a wide range of applications. 

2. Experimental 

2.1 Spectral range selection 

Like all alcohols, ethanol (C2H5OH) has characteristic infrared bands due to O–H and C–O 
stretching. The very broad O–H stretching band is centered at 3400 cm−1, while the C–O 
stretching produces a strong band in the 1065 cm−1 region. These two options are also 
intensively exploited in commercial breath analyzers based on NDIR [18]. Using the latter 
region significantly improves selectivity and specificity for ethanol in a breath-like gas matrix 
containing 5% CO2 and saturated water vapor at 34 °C. Furthermore, using reduced gas 
pressure for the measurements allows the instrument to be operated at room temperature 
without the risk of condensation. A pressure of 100 hPa was found to be a good compromise 
between the intensity of the absorption signal and the broadening of the spectral features. For 
best performance in terms of selectivity, it is, however, important to account for the other 
species present in the gas mixture and investigate potential spectral interferences. Figure 1(a) 
shows the simulated transmission spectrum of 25 ppm (amount fraction, µmol mol−1) ethanol, 
corresponding to the lowest concentration used in standard mixtures, in the 600–4500 cm−1 
region in a breath like gas matrix at room temperature, reduced pressure of 100 hPa, and for 
an absorption path length of 25 m. The ethanol data were taken from the Pacific Northwest 
National Laboratory (PNNL) IR database (http://nwir.pnl.gov) [19] and adjusted according to 
our experimental conditions. Thereby, we also converted the decadic units of absorbance 
normalized at 296 K into transmittance, using the following equation: 

 ( ) ( )296,T    
1 

296,T 1 0
P

A C L
atmT

ν
ν

−
=  (1) 

where ( )296,TT ν  is the transmittance at wavenumber ν  (cm−1) and room temperature 

(296 K), A ( )296ν, T  is the absorbance from the PNNL database (ppm−1 m−1), while C (ppm), 

L (m), and P (atm) are the ethanol mixing ratio, absorption path length, and the cell pressure, 
respectively. 

Strictly speaking, Eq. (1) is only correct for single ro-vibrational absorption lines. In the 
case of ethanol, however, we do not have any information about individual ro-vibrational 
lines and we treat the whole spectrum by only one pressure independent absorbance 

( )296A ν,T .  Nevertheless, as a first approximation this approach is suited to gain information 

on the expected absorption strengths and to find the optimal spectral range for the 
spectroscopic measurements. The spectra of CO2 and H2O were simulated by using the 
parameters from the HITRAN spectral database [20] to generate the high resolution 
absorption line profiles. 
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water absorption is also possible. An external water chiller (ThermoCube 300, Solid State 
Cooling Systems, USA) is used to maintain both the laser and the optics module heatsinks at 
a stable temperature of 19.00 ± 0.05 °C. The sample gas temperature and pressure are 
monitored by a high-precision NTC-thermistor (10 kΩ, BetaTHERM Sensors, Ireland) and an 
absolute capacitance manometer (722B, MKS Instruments, Inc., USA), respectively. 

The electronics compartment includes a power supply unit, an embedded computer, a 
temperature controller for the optical module temperature stabilization, the laser driver 
electronics, and an FPGA-based system-on-chip hardware-control and data acquisition 
module with a sampling rate of 125 MS/s and 14 bit resolution [21]. The custom-built laser 
driver is based on the concept of intermittent continuous wave (iCW) scanning. As 
demonstrated recently, this driver eliminates the need for any external electronics (e.g., 
function generator or DAQ) for current modulation, while maintaining a high modulation 
capability (up to 20 kHz), and considerably lowers the demands on power supply 
performance. This is due to the fact that using the iCW driving it is possible to completely 
decouple the driver from the external power supply during laser operation. The laser current 
is solely provided by the charge stored in capacitors and also results in heat dissipation of less 
than 1 W for driving QC lasers. In addition, the current noise characteristic of this laser driver 
was found to be better than 1 nA/Hz1/2. Furthermore, the driver is fully configurable in terms 
of pulse width, duty-cycle and current amplitude via a GUI. The laser driver current is 
triggered every 270 μs at 50% duty cycle, resulting in a full spectral scan at a rate of 3.7 kHz. 
Under these conditions, the tuning range of the laser covers about 1.7 cm−1. Consecutive 
individual spectra are averaged on the FPGA and then transferred at 1 Hz to the host-PC for 
spectral analysis using a custom-written LabVIEW program. The absorption spectrum is 
fitted in real-time by an absorbance model that is the sum of the individual absorbance 
templates of the different molecular species. Further details to this approach are given in the 
next Section. 

 

Fig. 2. 3D CAD drawing of the QCLAS for the ethanol measurement (without the cover); the 
red line represents the path of the IR laser beam. The enclosure beneath the optical bread-board 
contains the entire electronics hardware. The dimensions of the instrument with the cover are 
33 × 30 × 63 cm3. 

3. Results and discussion 

3.1 High resolution ethanol spectrum 

As the instrument operates at reduced sample pressure and has a high spectral resolution, the 
PNNL spectral data for ethanol cannot be used for fitting purposes. Therefore, we need to 
generate our own reference spectra from experimental data. This procedure consists of four 
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Fig. 4. High-resolution transmission spectrum (black) of 100 ppm ethanol in synthetic air 
recorded by a DFB-QCL at 100 hPa pressure at room temperature and for 25 m absorption 
path together with the fitted template (red). The residual shows a very good agreement 
between measured data and fitting template. 

3.2 Performance of the instrument 

3.2.1 Precision and stability 

To evaluate the long-term performance of the instrument, a constant ethanol concentration of 
30 ppm was continuously measured over one hour. The gas sample was prepared by 
dynamically diluting an ethanol reference gas (225 ppm ethanol, PanGas AG, Switzerland) 
with synthetic air using mass flow controllers (MFCs Red-y smart series, Vögtlin Instruments 
GmbH, Switzerland) at a total flow of 800 ml/min. This mixture was continuously flowing 
through the multipass cell. Figure 5 shows the time series of the measured concentration after 
equilibration and the associated Allan-Werle deviation plot [22]. The root-mean-square error 
at 1 s is about 14 ppb and it reaches its minimum of 9 ppb at around 60 s integration time. 
This corresponds to an absorption noise level of 1.4 × 10−5 that is equivalent with an 
absorbance noise at unit path length of 5.6 × 10−9 cm−1. The same precision was obtained 
when up to 5% CO2 was gradually added to the gas stream. In terms of spectroscopy, similar 
behavior is expected also for water. However, in practice the analytical precision was limited 
by the technical difficulty of generating a stable humid air flow (see Section 3.2.3). 
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Fig. 5. Time series of ethanol concentration measurement with (purple) and without (red) 
addition of CO2 at varying concentration (green) and associated Allan deviation plots. 

3.2.2 Linearity 

The instrument response to changing ethanol concentration is shown in Fig. 6. The ethanol 
concentration was changed within the range of 25−225 ppm at steps of 25 ppm by diluting 
225 ppm ethanol with synthetic air. The highest concentration in the range corresponds to 
about 0.8 ‰ blood alcohol content (BAC, in g/kg) [23]. Every subsequent concentration step 
was measured over 30 s but after 2 min of equilibration time. All measurements were 
performed by using the same ethanol template recorded for 225 ppm. By fitting a linear 
regression model, a very tight correlation is obtained, as indicated by the associated residual 
plot (see Fig. 6). 
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Fig. 6. Measured ethanol concentration as a function of sampled ethanol concentration in the 
range of interest. 

3.2.3 Cross-sensitivities 

Laser spectroscopy is well known as a highly selective technique, but measuring accurately a 
few ppm of ethanol in a gas matrix containing several percent of H2O remains, however, very 
challenging, especially if the concentration of these species varies in a large range, e.g. from 
wet to dry conditions. In order to characterize and quantify potential interfering effects, the 
instrument was transferred to METAS and a dedicated gas handling setup based on MFCs 
was realized, which allowed for controlled mixing of the various compounds at the relevant 
concentrations. The MFCs were calibrated with the primary volumetric flow standard at 
METAS. The uncertainty for the flows is estimated to be 0.7 to 1% rel. 

Furthermore, a calibration gas generator (HovaCAL digital 311, Germany) was used to 
explore the influence of varying H2O concentration on the ethanol concentration retrieval. 
Thereby, a carrier gas (synthetic air) containing 22.5 ppm of ethanol was stepwise humidified 
by adding gravimetrically determined amounts of water vapor such that the H2O 
concentration covered the range between 0 and 7%. Figure 7(a) shows the time series of the 
measured H2O and ethanol concentrations. The elevated noise level on the ethanol retrieval is 
mainly due to the flow fluctuations in the humid gas supplied by the HovaCAL. During the 
water dilution experiments it was observed that the water absorption linewidth changes with 
concentration due to the self-broadening effect. This effect is strong enough to induce a 
systematic bias on the fit and thus, it influences the retrieved ethanol concentration. To 
account for this bias in the fitting routine, a series of water templates for typically seven 
different concentrations was assembled and fed into the fit function. In each iteration step the 
fit function then calculates an interpolated template to account for the contribution of the 
water to the detected transmission spectrum. This approach is similar to the procedure we 
described earlier [24]. Figure 7(b) depicts the correlation of the generated water concentration 
and the spectroscopically retrieved mixing ratio measurements. The averaged ethanol 
concentration within the steps corrected to dry conditions as a function of water concentration 
is shown in Fig. 7(c). We found a linear cross-correlation of 90 ± 44 ppb/% within the water 
concentration range from 0 to 7%. Considering the analytical precision of the laser 
spectrometer on ethanol, it is obvious that already 0.1% variation of the water vapor content 
of the sample gas would dominate the uncertainty of the EtOH measurements. According to 
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comparison of ethanol concentrations in both wet (conventional OIML) and dry (SI-traceable) 
gas mixtures. Finally, in more general terms, our results demonstrate that a conventional 
DFB-QCL can be used for precise measurements of organic compounds with broad 
absorption spectra if they exhibit pronounced spectral features. This is in contrast to the 
frequent assumption that only broad spectral coverage allows the selective measurement of 
gaseous organic substances and it may thus lead to a paradigm change in gas sensing, i.e. for 
medical applications involving breath analysis by mid-IR QCLAS. 
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